95 research outputs found

    Minimal Self-Contained Quantum Refrigeration Machine Based on Four Quantum Dots

    Full text link
    We present a theoretical study of an electronic quantum refrigerator based on four quantum dots arranged in a square configuration, in contact with as many thermal reservoirs. We show that the system implements the basic minimal mechanism for acting as a self-contained quantum refrigerator, by demonstrating heat extraction from the coldest reservoir and the cooling of the nearby quantum-dot.Comment: 5 pages, 3 figure

    Tracer particle in a confined correlated medium: an adiabatic elimination method

    Full text link
    We present a simple and systematic procedure to determine the effective dynamics of a Brownian particle coupled to a rapidly fluctuating correlated medium, modeled as a scalar Gaussian field, under spatial confinement. The method allows us, in particular, to address the case in which the fluctuations of the medium are suppressed in the vicinity of the particle, as described by a quadratic coupling in the underlying Hamiltonian. As a consequence of the confinement of the correlated medium, the resulting effective Fokker-Planck equation features spatially dependent drift and diffusion coefficients. We apply our method to simplified fluid models of binary mixtures and microemulsions near criticality containing a colloidal particle, and we analyze the corrections to the stationary distribution of the particle position and the diffusion coefficient.Comment: 26 pages, 4 figure

    Memory-induced oscillations of a driven particle in a dissipative correlated medium

    Full text link
    The overdamped dynamics of a particle is in general affected by its interaction with the surrounding medium, especially out of equilibrium, and when the latter develops spatial and temporal correlations. Here we consider the case in which the medium is modeled by a scalar Gaussian field with relaxational dynamics, and the particle is dragged at constant velocity through the medium by a harmonic trap. This mimics the setting of an active microrheology experiment conducted in a near-critical medium. When the particle is displaced from its average position in the nonequilibrium steady state, its subsequent relaxation is shown to feature damped oscillations. This is similar to what has been recently predicted and observed in viscoelastic fluids, but differs from what happens in the absence of driving or for an overdamped Markovian dynamics, in which cases oscillations cannot occur. We characterize these oscillating modes in terms of the parameters of the underlying mesoscopic model for the particle and the medium, confirming our analytical predictions via numerical simulations.Comment: 19 pages, 7 figure

    Nonequilibrium relaxation of a trapped particle in a near-critical Gaussian field

    Full text link
    We study the non-equilibrium relaxational dynamics of a probe particle linearly coupled to a thermally fluctuating scalar field and subject to a harmonic potential, which provides a cartoon for an optically trapped colloid immersed in a fluid close to its bulk critical point. The average position of the particle initially displaced from the position of mechanical equilibrium is shown to feature long-time algebraic tails as the critical point of the field is approached, the universal exponents of which are determined in arbitrary spatial dimensions. As expected, this behavior cannot be captured by adiabatic approaches which assume fast field relaxation. The predictions of the analytic, perturbative approach are qualitatively confirmed by numerical simulations.Comment: 33 pages, 11 figure

    Collective response to local perturbations: how to evade threats without losing coherence

    Full text link
    Living groups move in complex environments and are constantly subject to external stimuli, predatory attacks and disturbances. An efficient response to such perturbations is vital to maintain the group's coherence and cohesion. Perturbations are often local, i.e. they are initially perceived only by few individuals in the group, but can elicit a global response. This is the case of starling flocks, that can turn very quickly to evade predators. In this paper, we investigate the conditions under which a global change of direction can occur upon local perturbations. Using minimal models of self-propelled particles, we show that a collective directional response occurs on timescales that grow with the system size and it is, therefore, a finite-size effect. The larger the group is, the longer it will take to turn. We also show that global coherent turns can only take place if i) the mechanism for information propagation is efficient enough to transmit the local reaction undamped through the whole group; and if ii) motility is not too strong, to avoid that the perturbed individual leaves the group before the turn is complete. No compliance with such conditions results in the group's fragmentation or in a non-efficient response.Comment: 23 pages, 7 figure

    Quantum Optimization of Fully-Connected Spin Glasses

    Full text link
    The Sherrington-Kirkpatrick model with random ±1\pm1 couplings is programmed on the D-Wave Two annealer featuring 509 qubits interacting on a Chimera-type graph. The performance of the optimizer compares and correlates to simulated annealing. When considering the effect of the static noise, which degrades the performance of the annealer, one can estimate an improvement on the comparative scaling of the two methods in favor of the D-Wave machine. The optimal choice of parameters of the embedding on the Chimera graph is shown to be associated to the emergence of the spin-glass critical temperature of the embedded problem.Comment: includes supplemental materia
    • …
    corecore